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Abstract

We present our work on fast entropy coders for binary messages utilizing
only bit shifts and table lookups. To minimize code table size we limit our code
lengths with a novel type of variable–to–variable (VV) length code created from
source word merging. We refer to these codes as merged codes. With merged
codes it is possible to achieve a desired level of efficiency by adjusting the
number of bits read from the source at each step. The most efficient merged
codes yield a coder with an inefficiency of 0.4%, relative to the Shannon entropy,
in the worst case. On one of our test systems a current implementation of coder
using merged codes has a throughput of 35 Mbytes/sec.

1 Introduction

With the rapid progression of computing technology high–performance computing
is becoming more available. More complex problems are being examined at greater
levels of detail, and these computations are creating greater amounts of data that
must be stored for analysis. For example, a simulation of a Richtmyer–Meshkov
instability and turbulent mixing was performed at a resolution of 2048 x 2048 x 1920
on the IBM Sustained Stewardship TeraOp system located at Lawrence Livermore
National Laboratory [7]. The simulation run generated over three terabytes of data
which needed to be compressed and stored. Instead of tying up valuable disk space
by temporarily storing data which will be later compressed, we would like to add to
simulation codes the ability to encode data on the fly, before it is written to disk. A
coder used in this way must be fast, so as to not degrade the overall speed of the
simulation.
We present here our work on developing a fast entropy coder that performs only

bit shifts and table lookups during the coding process. To place a limit on the sizes
of our code tables, our coder uses merged source word codes (hereafter referred to as
“merged codes”), which are a type of variable–to–variable length (VV) code. Each
code has a source window of W bits, reading up to W bits per coding iteration, and
outputs a codeword that is up to C bits in length. When referring to a merged code
created with a specific (W,C) we call it a (W,C) merged code.
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We treat all data sources as binary and memoryless. Each bit bi in a source has
a probability of being either a 0 or a 1, denoted respectively by the pair (pi, qi).
We assume without loss of generality that the more probable symbol is 0, that is,
q ≤ 0.50. For a binary memoryless source with probabilities (p, q) the entropy H of
the source is defined as [9]:

H(p, q) = −(p log2 p+ q log2 q) (1)

From this we define the coding inefficiency I of a coder K at (p, q) as

IK(p, q) =
RK(p, q)−H(p, q)

H(p, q)
× 100 (2)

where RK(p, q) is the coding rate of coder K at (p, q). In a memoryless source, a
word of some length l has a weight w = pzqy, where z is the number of zeros in the
word and y is the number of ones. If there are s possible words in a source, RK(p, q)
for a coder is computed empirically as

RK(p, q) =
bitsout

bitsin
(3)

and theoretically as

RK(p, q) =

∑s
i=1

ciwi
∑s

i=1
liwi

(4)

where ci is the length of the prefix–free codeword assigned to source word i. Theoreti-
cal inefficiency refers to I computed with a theoretical R, while empirical inefficiency
refers to I computed with an empirical R. Our goal is to create a coder that has a
theoretical I ≤ 1% when coding a given source. We call a coder K inefficient if IK >

1%. We later show that a coder using the most efficienct of the merged codes created
in our study would have a theoretical inefficiency of less than 0.4%.

2 Prior Work

Given a binary memoryless source a common way of encoding it is through run–
length encoding, usually the more efficient Golomb code [4]. A plot of the Golomb
Codes’ inefficiency in Figure 1 shows that while the codes are mostly efficient, there
are regions where the inefficiency is well above 1%. A more efficient method is to
use Block–to–Variable (BV) Huffman coding [5], in which W bits are read at a time
and encoded. A plot of the inefficiency of 10-bit block Huffman coding in Figure
2 shows that BV Huffman coding can perform much better in the regions where
Golomb coding is inefficient. BV coding creates a problem, however. When using
table lookups for encoding and decoding, the number of entries in the tables must
be a power of two of the block and longest code lengths, respectively. If q is small
enough the longest code length may force a decoding table size that is larger than
desired. To enforce a maximum allowable decode table size we need to limit the code
lengths. Rather than use previous methods of limiting code lengths that adjust code
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lengths at the expense of efficiency [12] we choose to limit code lengths by shortening
those source words that are least likely. Source word merging (described in section 3)
performs this shortening, taking a BV Huffman code and transforming it into a VV
code.
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Figure 1: Inefficiency of Golomb Codes.
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Figure 2: Inefficiency of Huffman Code.

VV codes are typically described in the literature as being created through an
extension process similar to that of the Tunstall variable–to–block (VB) algorithm
(reviewed in [1]). For a source with a given alphabet of β symbols the extension
process is to first create a parse tree with β leaves, where each leaf si is at depth 1
and has probability P (si). Then, pick a leaf s on the tree according to some criteria
and extend it, turning it into an internal node with β children (all leaves) with
probabilities P (s)P (s1), P (s)P (s2), ..., P (s)P (sβ). The process repeats until some
termination criteria are met. Prefix–free codes are generated for the source words,
and the resulting word–code pairs are used to encode the source. Most work in VV
code algorithms focuses on selecting a leaf for extension such that the resulting parse
tree is optimal.
VV codes generally have not received a lot of attention. The reason for this is

perhaps that the VV codes are difficult to analyze, and there are as yet no known
algorithmic methods for creating optimal codes. Currently the only way to find
an optimal VV code is through an exhaustive search. Fabris [2], Stubley [11], and
Freeman [3] studied this problem, and although they developed methods that can be
used to find codes that are near optimal the conclusion in the literature appears to
be that a finding an efficient algorithm that generates optimal codes is an unsolved
problem. Part of the difficulty is that the information mismatch (divergence) between
a source parse tree and its associated code fluctuates with each leaf extension [3], and
that even given an optimal tree the next larger optimal tree cannot always be obtained
by extension [10].
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3 VV Codes from Source Word Merging

Merged codes provide a way to limit the encoding and decoding table sizes. Source
word merging stems from the observation that if we read a binary source W bits at a
time then a parse tree for a binary bitstream has 2W leaves (W ≥ 1) and is complete—
the parse tree will parse any bitstream (we assume the end of the bitstream is padded
if needed). From this it is simple to observe that any parse tree with no null branches is
also complete. Given a complete parse tree, by repeatedly merging the least probable
leaf together with it’s sibling into their parent we maintain the tree’s completeness
while reducing the number of source words, and thereby shorten the code lengths.
In essence the merging process transforms a BV code into a VV code. Given (p, q)

and (W,C) the merging algorithm is shown in figure 3. Table 1 gives the effective
number of source words for (10, C) merged codes, created for various values of C and
q.

Generate all 2W source words

Compute each source word’s weight

Compute a code length ci for each word

while ( ∃ c > C) {

select word with longest code length c

merge with sibling into parent

compute weight of new, shorter word

reassign code lengths to all words

}

Generate prefix–free codes

1 0

111 110 000001010011100101

1 0

111 110 000001010011100101

1 0

11

000001010011100101

1 0

1

000001

01

1335 5 44 4

13344 4

4

2 1

3

3

Figure 3: Example of merging leaves on the source parse tree. Underlined numbers
are code lengths.

Code Length Constraint
q 7 8 9 10

0.12 56 57 68 176
0.20 60 89 144 192
0.30 84 155 263 444
0.40 90 224 367 731

Table 1: Effective number of source words for some (10, C) merged codes. Original
number of words was 1024.

4 Theoretical Inefficiency of Merged VV Codes

We examined merged VV codes created with an input bit window size W , 7 ≤ W ≤
15, and an output code length limit C, 7 ≤ C ≤ 13. For each value of q, at a
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granularity of 0.01 we created coding table with the parameters (W,C) and measured
the theoretical and empirical inefficiency. Figures 4 and 5 show plots of the empirical
inefficiency of merged codes where the W equals 10 and 15 bits, and C = 7, 10, 11.
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Figure 4: I of (10,C) merged codes.
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Figure 5: I of (15,C) merged codes.

Our observation is that as W increases the inefficiency of the resulting codes
tends to be less, and the point where the code becomes inefficient moves to the left.
We define the point of inefficiency, as q tends to zero, as the value of q where the
inefficiency jumps above the 1 percent mark and does not return below it. For a
given W the resulting codes for each C are as expected from previous research: the
inefficiency of the codes varies almost unpredictably and there are regions where
one C is more efficient than another. For the merged codes not pictured here the
observations were similar. We conclude from this that in general if a coder is to use
one and only one merged code, and even a small search for a most optimal code is
infeasible, then the code should be created with the largest W possible. Given W

and q we select the value of C that yields the least inefficient code and satisfies any
requirements to limit the size of the entries in the coding tables.
Figure 6 shows the correlation between the theoretical and empirical inefficiency

of (10, 10) merged codes (results were similar for other codes studied). The overall
theoretical curve was obtained by selecting for each value of qi at a granularity of
0.001 the (10, 10) merged code with the least inefficiency at that qi. Empirical values
were obtained by creating a (10, 10) merged code for each value of qi at a granularity
of 0.01, and encoding a memoryless bitstream with q = qi. There are some places
on the plot where the empirical value does not match the expected theoretical value.
This is because the empirical values were recorded with the assumption that that the
(10, 10) merged code created for a certain q1 would be most optimal at that q1. This
assumption is flawed, as there are circumstances when a (10, 10) merged code created
for a nearby q2 is more efficient at q1 than the table created for q1.
Figure 7 shows the inefficiency curve that results if for each value of q the most

optimal code is selected from among those created in our study. The reduction in
inefficiency is dramatic. Excluding the values where the curve rises to the point of
inefficiency a coder using these codes would have a worst-case inefficiency of 0.4%.
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Figure 6: I of (10,10) merged codes.
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Figure 7: I of most optimal codes.

5 Coding Tables and a Simple Coder

An encoding table entry is composed of three fields: the codeword, the codeword
length, and the source word length. For speed the sizes of the table entries used are
the same as the standard word sizes: 16 or 32 bits. For simplicity the field widths are
fixed. For the 16–bit entry the length fields are 3 bits wide, and the codeword field is
10 bits. For the 32–bit entry the length fields are 5 bits wide, and the codeword field
is 22 bits wide. The fixed field widths limit the number of different codes that can be
created. For example, an (8, 8) merged code could use 16–bit table entries, whereas
an (11, 8) merged code could not. However, a bias may be applied to one of the field
width values to make a table entry size useable when it otherwise would not be. For
example, for a given q if an (11, 8) merged code is computed and the resulting source
word lengths have a range of 8 or less, say the longest word is 10 and the shortest is
3, then a bias of 3 may be subtracted from all source word lengths before they are
written to the encoding table. When the actual encoding is performed a bias of 3 is
added to each source word length that is obtained from the coding table.
The coder has an input and output buffer. It also has two registers, the source

register and the coded register. Each register is 64 bits wide. Bits to be encoded are
taken from the source register, and encoded bits are placed on the coded register.
When the number of available source bits in the source register falls to 32 or less
an additional 32 bits are transferred from the input buffer. When the coded register
contains 32 or more coded bits 32 bits are transferred to the output buffer.
Given a (W,C) merged code the coding algorithm is:

wordlen = 0;
codelen = 0;
numSrcBits = 64;
numCdeBits = 0;
Load 64 source bits into the source register;

while (source data remains)
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Use the next W bits in the source register to get a value v;
Consult CodeTable[v]

Get wordlen, codelen, and codeword;

Shift coded register codelen bits;
Write codeword to coded register;
numCdeBits = numCdeBits+ codelen;
Shift source register to remove wordlen bits;
numSrcbits = numSrcbits− wordlen;

if (numSrcBits ≤ 32)
transfer 32 source bits from the input buffer;
numSrcBits = numSrcBits+ 32;

if (numCdeBits ≥ 32)
transfer 32 coded bits to the output buffer;
numCdeBits = numCdeBits− 32;

end

To test the speed of the coder we encoded bitstreams that were random but
weighted so that a desired (p, q) was obtained. We then encoded the bitstream with
a merged code for that (p, q).
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Figure 8: Encoding time vs. q for 100 megabyte data.

Figure 8 shows a diagram of the encoding time for 100–megabyte bitstreams, as q
goes from 0.01 to 0.50. The test system was an SGI O2 with a 200 MHz MIPS R5000
processor with a 32 kbyte data cache. The encoding table entries were 32 bits wide.
As q approaches 0.50 more and more table entries are touched and must be loaded
into the cache. The portions of the bitstream being worked on are also loaded into
cache, and so the performance of the coder degrades as table entries and bitstream
data compete for cache space. As q tends to 0 fewer table entries are actually used,
and so there is more data in cache and less loading of table entries. At some point the
majority of the table entries used are those that are powers of 2. For a 1024–entry
table this means that only 10 entries are likely to be used. This has good implications:
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for smaller values of q a larger W can be used without causing a major detriment to
performance, although the memory allocated for tables grows.

6 A Bin Coder for Wavelet Bitplanes

As a demonstration of the speed of merged codes, we present here a bin coder used for
losslessly encoding the bitplanes of coefficients resulting from the wavelet transform
of an 8–bit grayscale image. A bin is a simple coder that uses a code that is most ideal
for a certain (p, q). Examples of bin coders are presented in [6] and [8]. Our encoder
is a practical example of how merged codes may be applied to a specific purpose.
As this bin coder is not more general–purpose, the amount of overhead required to
encode the wavelet coefficients is minimal.
As each wavelet coefficient is 9 bits wide (8 bit magnitude and 1 sign bit) our

coder creates and uses 9 bins. After a wavelet transform the resulting coefficients
are passed to the coder. The coder separates the coefficients into bitplanes, and
for a given bitplane i determines (pi, qi) by means of a simple scan, treating it as a
memoryless source. Once (pi, qi) has been determined, bin i loads the corresponding
merged code encoding table, and uses that table to encode bitplane i. If (pi, qi) is
such that a merged code is too inefficient then a more efficient Golomb code is used
instead. Also if (pi, qi) is close to 0.50 then no encoding takes place, and the bitplane
is placed into a “dummy” bin and is held until all other bins have completed encoding.
To test the speed of this coder we transformed several images and encoded the

resulting wavelet coefficients. Images b500 and b834 came from the data generated
in [7], and y4.095 and z7.125 from a simulation of crack propagation 1. Testing was
performed on several machines: an SGI O2 with a 200 MHz MIPS R5000 processor,
one 250 MHz MIPS R10000 processor on a 45–processor SGI Origin 2000, and a
PC with a 2.53 GHz Pentium 4 with 1Gbyte 1066MHz RDRAM memory, running
RedHat 6.1. Throughput measurements include only in-memory operations; there
was no disk I/O performed. Results from the tests are given in table 2. Table 3
shows how many of each type of bin was created for each image.

Size Throughput (Mbyte/sec)
Image Before After SGI O2 SGI Origin 2000 Linux PC
b500 2.345 0.837 5.852 12.197 37.475
b834 2.379 1.432 6.291 13.517 38.319
y4.095 4.219 0.768 7.533 15.593 48.720
z7.125 4.500 2.102 6.180 13.132 38.628

Table 2: Information about coding speed. Sizes are in Megabytes.

As an example of individual bin speeds, when when using a (15,10) merged code
with a source q = 0.274 a throughput of 29 megabytes/sec was observed. When using
a (10,10) code with a source q = 374 a throughput of 35 megabytes/sec was observed.

1http://www.llnl.gov/largevis/atoms/brittle-fracture/
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Image Golomb Merged VV Dummy
b500 4 5 0
b834 2 7 0
y4.095 6 3 0
z7.125 3 6 0

Table 3: Bins created for each image.

7 Future Work

For the future we plan to focus on developing more general coders that use a modest
number of merged codes and have a theoretical inefficiency of less than 1%. We
would like to use merged codes to develop a more general implementation of a bin
coder, akin to the coders presented in [6] and [8]. In this type of bin coder a finite
number of bins are placed so that together they cover the entire range 0 < q < 0.50,
with no bin overlapping another. Bits from a binary source are read and placed into
the appropriate bins based on the bits’ respective (p, q). Bin coders have some nice
advantages. Overall coding rate can be adjusted by changing the number of bins used,
and/or by altering the probability modeling scheme that determines the probability
of each source bit. The only adaptivity in the coder is in updating the probability
model. There is no overhead for updating or altering code trees.
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